The speed of sound is also different for different types of solids, liquids, and gases. One of the reasons for this is that the elastic properties are different for different materials. Elastic properties relate to the tendency of a material to maintain its shape and not deform when a force is applied to it. A material such as steel will experience a smaller deformation than rubber when a force is applied to the materials. Steel is a rigid material while rubber deforms easily and is a more flexible material.
At the particle level, a rigid material is characterized by atoms and/or molecules with strong forces of attraction for each other. These forces can be thought of as springs that control how quickly the particles return to their original positions. Particles that return to their resting position quickly are ready to move again more quickly, and thus they can vibrate at higher speeds. Therefore, sound can travel faster through mediums with higher elastic properties (like steel) than it can through solids like rubber, which have lower elastic properties.
The phase of matter has a large impact upon the elastic properties of a medium. In general, the bond strength between particles is strongest in solid materials and is weakest in the gaseous state. As a result, sound waves travel faster in solids than in liquids, and faster in liquids than in gasses. While the density of a medium also affects the speed of sound, the elastic properties have a greater influence on the wave speed.

x

Hi!
I'm Piter!

Would you like to get a custom essay? How about receiving a customized one?

Check it out