Topic: HistoryAsia

Last updated: May 26, 2019

Abstract The study of (olive/oleic bio-alkyd resin, OOBAR) as a new biosorbent was prepared in open esterification system from an olive tree, glycerol, oleic acid and phthalic anhydride. OOBAR characterization was performed by using ultraviolet/visible, infrared spectra, Boehm titration, zero-point charge, iodine number, methylene blue index and bulk DC electrical conductivity. The obtained data of acidic and basic sites show that the OOBAR surface was contained 2.6 and 1.3 mmol/g. The pHZCP was 3.

6, ?pH at pH 9.27 was -4.33, the I2 number was 2.3 mmol/g (291.9 mg/g), methylene blue was 0.69 mmol/g (220.7 mg/g) and DC conductivity was 1.

We Will Write a Custom Essay Specifically
For You For Only $13.90/page!

order now

0 ×10-9 ?-1 cm-1. The effects of acidity, reducing agent, NH4SCN concentration, contact shaking time, Mo concentration, temperature, OOBAR dose, batch factor and ionic strength for Mo(V) were determined. The maximum OOBAR capacity for Mo(V) sorption was 1.3 mmol/g. The molar ratio of Mo(SCN)6-, OOBAR+ was 1:1 in acidic medium. The equilibrium isotherms, kinetics, diffusion and thermodynamic models for Mo(V) sorption onto OOBAR were studied.

Thermodynamic parameters such as enthalpy (?H), entropy (?S) and Gibbs free energy (?G) were -46.2 kJ/mol, -0.082 kJ/Kmol and -21.8 kJ/mol was shown that the sorption process was spontaneous, exothermic nature with decrease disorder and randomness at the solid-liquid interface of Mo with OOBAR. Dynamic experiments using glass column was indicated a good affinity chromatographic separation for its applications in many pharmaceutical and biological samples including liver mice tissue and pharmaceutical vitamin drugs.

The lower relative standard deviation (RSD%) value for pharmaceutical applications samples (n=5) was found from 1.1%.Keywords: Olive; Oleic acid; Alkyd resin; Molybdenum; Pharmaceutical; Sorption IntroductionMolybdenum (Mo) has applications in many pharmaceutical and biological samples 1. Mo is an economically silvery-white transition metal which has five oxidation states from (+2) to (+6) with an atomic number of 42 and an atomic mass of 96 2, 3. Mo is a bio-essential metal for humans, animals, and plants. It has relatively low toxicity because of a component or co-factor of enzymes which are important for life, so without Mo, organisms can’t work and will show signs of deficiency 2-5. Metallic Mo offers many advantages like good corrosion resistance, excellent mechanical, thermal, electrical properties, high temperature and its melting point (2883 K) due to the low coefficient of its high thermal expansion and conductivity. These excellent properties make it can be used in electronics, metallurgy, aerospace and electrical industries 6-9.

Biosorbent is a biological origin solid system from bacterial, fungal, plant or animal origin 10. It has several functional groups such as carboxyl, ether, carbonyl, hydroxyl, and ester groups and more effective alternatives for metal ions sorption (e.g Mo) from aqueous solution 11-16. Adsorption using a cheap, abundant and environmental-friendly adsorbent originated from a plant such as an olive tree (Olea Europea). It has an effective substitute as is the simplest and most useful method 17, 18. Its common name was for about 35 species of evergreen shrubs and trees in the olive family of the genus Olea which has varieties of parts such as fruit, leaves, and oil. The olive tree was domesticated trees in the family Oleaceae cultivated by man for more than 5500 years ago. Olive trees native to the Medial East, Egypt, Palestine, Jordon, Syria, Africa and Asia.

They have many varieties that exhibit major or minor phenotypical and genetic differences 19-23.Oleic acid (OA, cis-9 C18:1) is a monounsaturated fatty acid (MUFA). It is abundant in most of the fatty acids by (48%) or in olive oil by (70%-80%).

It can be extracted from peanut and its products. Researches indicate that the MUFA-rich diet has protective effects on cardiovascular risk and diabetes 24-27. Alkyd resins are highly branched polymer with a polyester backbone which significant for synthetic polymers 28, 29. They are thermoplastic polyester resins can be synthesized by polycondensation 30, 31 of three types of monomers of polyhydric alcohols (e.

g; glycerol), fatty acids (e.g; oleic acid) and dibasic acids or their anhydrides (e.g; phthalic anhydride) 32-37. They can be dissolved in organic solvents and have good interactions with polar substrates such as wood and steel 38. They have excellent properties such as acceptable, inexpensive to produce, high gloss, retention color, dissolved in organic solvents, excellent thermal stability, eco-friendly, excellent wetting properties and good adhesion 26, 34, 35. These properties make them suitable to apply in industrial coating, adhesives, the binder for composites and anticorrosion paint 39.

Bio-alkyd resin contains reactive sites such as carbon-carbon double bond, a polar ester group, methylene group attached to the carbonyl site, allylic methylene attached to double bond 40. The present paper of the study of OOBAR as a new biosorbent which used for Mo(V) sorption was synthesis. Properties of OOBAR are were characterized by UV-Vis, FTIR, and bulk DC electrical conductivity. The sorption of Mo(V) onto OOBAR was studied to optimize the best conditions for the sorption process. The obtained data have been examined for kinetic, thermodynamic, and equilibrium situations. Mo was applied in many pharmaceutical and biological areas including tissue of lever mice, tap water, and vitamin drugs. 2. Experimental2.

1. ApparatusThe JASCO FTIR-4100 spectrometer in the 4000–400 cm-1 regions by using KBr disc (KBr pellet) was carried out the characterization of olive bio-alkyd resin. The remaining concentrations of Mo(V) were determined by using JASCO (V-630 UV-VIS Spectrophotometer, Japan). Bulk DC conductivity was established using Keithley, 6517B electrometer-high resistance meter after pressing OOBAR disk by a Hydraulic press at 12 tons. Dynamic technique for chromatographic separation experiments was carried out by using a glass column with a bed height of 15 cm approximately that contained 9.5 g of OOBAR was 35 cm long and 1.

5 cm in diameter. 2. 2. Reagents, materials and real samples Olive biosorbent (OB): Olive tree legs and green leaves were cut to small particle size then washing with water, drying at 250 ?C and blending using food blender. Carboxy olive biosorbent (COB) preparation: 100 g of OB with 80 mL of concentrated HNO3 were heating in a beaker until brown foams finished, then washing with distilled water and methanol then drier at 80 ?C. Olive/oleic bio-alkyd resin (OOBAR) Preparation: A 85 g of oleic acid with 28 g of glycerol were heated for 6 h. Then the product was heated with 15 g biosorbent 6 h, followed by adding 15 g of phthalic anhydride then heated 6 h.

The final product was washed with distilled water then methanol and left to dry at room temperature then blending and sifting at 355 µm (0.0355 cm). Molybdenum stock solution (1 g/L) preparation: 0.185 g of (NH4)6Mo7O24.4H2O was dissolved in distilled water to 100 mL.Vitamins drugs stock solutions: 1.217 g Vitayami for the deficiency of iron and vitamins tablets which contain (Cu: 1000 mcg; Fe: 30 mg: Mn: 2.5 mg: Mo: 15 mcg) and other content (Multi-Apex for Pharmaceutical Industries, Badr City – Cairo – Egypt), 1.

067 g V2 plus multivitamins and minerals capsules which contain (Mo: 0.2 mg; Cu: 1 mg: Mn: 1 mg: Fe: 10 mg) and other content (Pharco pharmaceuticals, Alexandria – Egypt), 1.299 g Vitamax plus dietary supplements capsules which contain (Cu: 2 mg: Fe: 9 mg; Mn: 5 mg; Mo: 30 mcg) and other content (El Salam City – Cairo – Egypt) and 1.67 g Vitona plus energized and biotonic capsules which contain (Fe: 14 mg; Cu: 2 mg; Mn: 2.5 mg; Mo: 0.186 mg) and other contents (Egyptian Int. Pharmaceutical Industries CO, E.

I. P. CO, 10th of Ramadan City – Egypt) were prepared by dissolving of each one in aqua regia and gently evaporated several times till dryness and removing any excess of them. The residual was dissolved in distilled water to 100 mL in a measuring flask containing 1mL of concentrated HNO3.The tissue of lever mice stock solution: A 0.5 g of liver tissue spiked with Mo nanoparticle (0.25 mg) was prepared by dissolving in aqua regia and gently evaporated several times till dryness and removing any excess of them.

The residual was dissolved in distilled water to 10 mL in a measuring flask containing 1mL of concentrated HNO3.2.3. Recommended procedures A 0.1 g of OOBAR was mixed with adjust concentration of molybdenum solution, H2SO4, L-ascorbic acid, and NH4SCN then diluted to 25 mL and shaken 60 min at room temperature. The remaining concentrations of Mo(V) were determined using spectrophotometrically (?max 485 nm) 41.

The sorption percentage of Mo(V) and sorption capacity of OOBAR (Q, mmol/g) were calculated. By using a dynamic technique, 10 g of OOBAR was packed through glass column which has 35 cm long and 1.5 cm in diameter with a bed height at L= 15 cm. A series of 25 mL of tap water, liver mice tissue or vitamins solutions (n = 5) were passed through the OOBAR columns at different flow rate 0.2-1.7 mL/min. The effluent solutions were collected and analyzed spectrophotometrically. Mo(V) was eluted from OOBAR columns with NH4OH (0.

05 mol/L) as eluent at a flow rate of 3 mL/min then determined spectrophotometrically.3. Result and discussion3. 1. Characterization of olive bio-alkyd resin (OOBAR) FTIR spectroscopy was used for identification of specific functional groups of OB, COB, OOBAR, and Mo:OOBAR in range 4000–400 cm-1. OB spectrum have broadband at 2996-3660 cm-1 (?OH), sharp peaks at 2933 cm-1 (?CH), 1612 cm-1 (?C?C) and 1084 cm-1 (?C-O-C).

The bands of COB spectrum were shifted to 2343-3664, 1606 and 1097 cm-1. In addition, the new band has appeared at 37001 cm-1 while the band at 2933 was absent due to an oxidation process. Also, the bands of OOBAR spectrum were shifted to 3027-3741, 2925, 1631.5 and 1166 cm-1. The new bands have appeared at 2979, 2854 and 1739 and 1459 cm-1 due to C-H (aromatic), C-H (aliphatic), C=O and COOR. There are many sharp peaks for Mo:OOBAR was appeared at 780, 693, 519 and 507 cm-1 due to Mo(V) complexion and other bands for O-H, C-H (aromatic), C-H (aliphatic), C=O and COOR was disappeared due to the cleating agent.

Figure 1UV-VIS electronic spectra of OB, COB, OOBAR, and Mo:OOBAR were estimated in solid state using Nujol mulls procedure. The higher energy of UV spectra bands of OB was performed at 241-265 nm which were attributed to the ?-?* transitions, and 293-340 nm which was attributed to the n-?* transitions localized on the conjugated system. Higher energy adsorption band in COB was assigned to 241-265 nm which was attributed to the ?-?* transitions, the second band was shifted to 293-355 nm and after oxidation process, there was a new band at 368-370 nm which were assigned to the n-?* transitions localized on the conjugated system. UV spectrum of OOBAR was shown that many absorption bands between 200 and 250 nm at (201, 205, 216, 224, 227-229, 232, 237, 241 and 245) nm which were assigned to ?-?* transitions and due to the several functional groups of OOBAR. Also, many lower energy bands have appeared between 300 and 320 nm due to n-?* transitions that localized on the conjugated system.

Mo:OOBAR has higher energy adsorption bands at 233-245, 250 and 261 nm which were attributed to the ?-?* transitions, and 264-296 nm which was attributed to the ?-?* and n-?* transitions, and also at 299 and 307 nm which were attributed to the n-?* transitions localized on the conjugated system. There are many lower energy bands were appeared at 247, 255 and 259 nm which were assigned to ?-?* transitions, and also between 300 and 340 nm due to n-?* transitions that localized on the conjugated system.Figure 2Boehm titration offers an identification of the active surface sites such as carboxylic, carbonyl and phenolic 42. Total acidic and basic sites were detected by back titration using 0.1 mol/L HCl and NaOH solutions. Carboxylic, lactonic and phenolic groups were evaluated by using titration with 0.1 mol/L NaHCO3, Na2CO3, and NaOH solutions.

The acidic and basic sites of OB were (1.8 and 0.9 mmol/g), COB was (1.6 and 0.9 mmol/g), and OOBAR was (2.6 and 1.

3 mmol/g). It is clear that the amount surface of total acidic sites was greater than basic sites in OB, COB, and OOBAR which have mainly acidic character. OB has 0.7 mmol/g carboxylic sites, 0.6 mmol/g lactonic sites and 0.

5 mmol/g phenolic sites. The quantity of lactonic and phenolic sites was decreased from 1.1 mmol/g in OB to 0.

6 mmol/g of COB while the number of carboxylic sites of COB was increased to 1.0 mmol/g due to an oxidation process. The amount of carboxylic and carbonyl groups of OOBAR is higher than COB due to the addition of phthalic acid.Table 1The values of iodine number (I2 No) of OB, COB, and OOBAR were evaluated using back titration with 0.05 mol/L I2 and Na2S2O3 solutions. The I2 No of OB, COB, and OOBAR were 406.1, 320.

1 and 291.9 mg/g (3.2, 2.

5 and 2.3 mmol/g). The I2 No of OOBAR were decreased than OB and COB due to the coupling the biosorbent with phthalic acid. Methylene blue value (MB) of OB, COB and OOBAR were 176.

97, 216.32 and 220.7 mg/g (0.59, 0.68 and 0.69 mmol/g). The increasing of MB value of OOBAR due to additional of functional groups. The results obtained indicated that the I2 No depends on the adsorption process while the MB value depends on the cation exchange process (the amount surface of total acidic sites is greater than basic sites in OB and COB).

The I2 No of OOBAR was 291.9 mg/g (2.3 mmol/g) and methylene blue was 220.7 mg/g (0.69 mmol/L), these values are greater than those reported for other biosorbents 43-55. Table 1Table 2The zero-point charge is the pH value that the charge of a biosorbent surface is equal to zero 56. The pHPZC values of OB, COB and OOBAR were7.0, 3.

2 and 3.6. Maximum values of ?pH was 1.5, -1.9 at pH= 5.2, 9.1 for OB, -6.

7 at pH= 11 for COB and -4.4 at pH= 9.4 for OOBAR.

The surface would be negatively charged due to the deprotonation of the surface functional groups for OB, COB and OOBAR at pH values above 7.0, 3.2 and 3.6 while the surface became positively charged below pH 7.0, 3.2 and 3.6.

The shifted of pHPZC value OB from pH 7 to pHs 3.2 and 3.6 for COB and OOBAR due to the increasing of functional groups in the matrix of COB and OOBAR. The OB, COB, and OOBAR sorbents have surface buffering (non-effect with acidic and basic medium) at pHs (5.4-9), (4.2-10.8), and (6.9-9.

3). The higher percentages (98%) for the sorption of molybdenum (V) from aqueous solution were in strongly acidic medium H2SO4 (0.6 – 3.6 mol/L). This was happened because of ion association complex between cationic OOBAR+ in acidic medium (pH ; 3.6) and anionic ammonium thiocyanate Mo(SCN)6– complex. Table 1Figure 3Figure 4 Electrical conductivity measurements were obtained by the method of Ahmenda using an EDT instrument BA380 57. Bulk electrical DC conductivity (?) was recorded at room temperature in the solid state, pressing the samples at 10 tons in the form of a circular disk and potential equal to 2 volts.

The values of electrical conductivity were 0.12×10-7 and 4.1×10-6 ?-1 cm-1 for OB and COB. The value of COB was greater than OB due to increasing of active sites (functional groups) with the oxidation process. While the lower value of OOBAR than COB (0.

001 ?-1 cm-1) indicates that due to converting from matrix of COB to polymer chain in OOBAR. Table 13. 2.

Batch sorption behavior of the sorption of Mo(SCN)6– using OOBARThe obtained data was shown that higher values of sorption percentages were in strongly acidic medium H2SO4 (3.6 mol/L) at low concentrations of both ascorbic acid (0.08 mol/L) as reducing agent and NH4SCN (0.12 mol/L) which form orange-red color for Mo(V) complex (Fig. 4). In the effect of dose batch factor (0.

05-0.5 g OOBAR in 25mL sample volume), the higher sorption percentages slightly increased (92-100%) and its capacity decreased by decreasing batch factor (v/m) and increasing amount of OOBAR dose so the sorption process can't depend on it (Fig. 5).

While in the effect of volume batch factor, the sorption percentages (98-22%) and its capacity were decreased by increasing batch factor (V/M) and sample volume (25-100 mL) (Fig. 6). By studying the effect of ionic strength of salts, the results indicate that the sorption behavior of both NaCl and KCl are similar with maximum sorption percentages (86-92%), unlike the sorption behavior percentages (80-21%) of NH4Cl indicate that the ammonium salts can be used in the stripping of Mo ion from OOBAR biosorbent (Fig.

7). Figure 4-73. 3. Equilibrium studiedA 3.6 mol/L H2SO4, 0.08 mol/L ascorbic acid, 0.

12 mol/L NH4SCN and shaking 1 h at room temperature, the OOBAR capacity for sorption Mo(V) was increased by increasing initial concentrations until be reached to maximum capacity (Qmax). The Qmax value of OOBAR for Mo(V) was 0.17 mmol/g (16.3 mg/g) with intercept and the correlation coefficients (R2) were 0.001 and 0.991.

Table 3There are many isotherm models which employed to analyze the sorption mechanism and determined the parameters equilibrium. These models are Langmuir, Freundlich, Dubinin–Radushkevich, Temkin and Harkins Jura models which selected to predict the adsorption capacities and suitable for the experimental equilibrium data. Adsorption isotherm of the Langmuir model is an empirical model was obtained from an assumption of the uniform energy of adsorption sites onto the absorbent surface and the adsorbate along the plane hasn't existed on the surface. It hypothesis that there is a fixed number of active sites is homogeneous in which adsorption occurs inside the surface of the adsorbent. These active sites have the identical affinity for a monolayer adsorption molecule and there is no interaction between molecules adsorbed. For sorption of Mo(V) complexion, the values of b, KL, and R2 were 50.

5 L/mmol, 0.18 mmol/g and 0.997. Freundlich adsorption isotherm model is an empirical equation assigned to characterize adsorption on heterogeneous systems with an interaction between the adsorbed molecules, and formation of a monolayer unrestricted.

It assumes due to adsorbate concentration increases; its concentration also increases on the adsorbent surface. The resulted values for sorption of Mo(V) complexion of 1/n, KF and R2 were 0.35, 0.28 L/g and 0.933. The observed results of correlation coefficients (R2) of sorption Mo(V) complexion in Langmuir and Freundlich isotherms indicated that the Langmuir model is a good fit to the adsorption experimental data and suggests monomolecular layer as well as a homogeneous distribution of active sites on OOBAR surface.Table 4Dubinin-Radushkevich model of adsorption isotherm is an empirical equation employed to indicate the difference between physical and chemical adsorption, describes adsorption for both heterogeneous and adsorption mechanism.

R2 value was 0.975 which approximately agreement with Freundlich isotherm model, ? was -0.008 mmol2/kJ2 and KD-R was 0.19 mmol/g. The sorption free energy (?E = (-2 ?)-½) can be obtained from the value of ? as 7.91 kJ/mol.

Table 4Temkin isotherm model was obtained as the effect of some indirect sorbate/adsorbate interactions and suggested that because of these interactions the adsorption heat of all molecules in the layer would decrease linearly. The results obtained of sorption Mo(V) complexion were R2: 0.984, A: 1.7×103 mmol/g and B: 0.

03. By applied Harkins Jura adsorption isotherm model, A, B constant parameters and R2 were -1.2×10-3, 0.

8 and 0.6 for sorption Mo(V) complexion. Table 43. 3. Kinetic studiesRate sorption percentage (74-91%) of Mo(V) complexion was very rapid at the initial stage of the contact period time (0.5-3 min) then rate sorption became slower until reached to the equilibrium time. This phenomenon was occurred due to the fact during the initial stage of the adsorption process, a large number of vacant surface sites were available for adsorption.

Near the equilibrium, vacant surface sites remaining were difficult to occupy due to the slow Mo(V) ion pores diffusion on OOBAR and the repulsive forces between bulk phases and solid molecules.Kinetic studies were estimated to investigate the effects of contact shaking time at a definite quantity adsorbed of initial Mo ion concentration at room temperature. It was illustrated by using five simplified kinetic models namely (pseudo-first-order and pseudo-second-order) and diffusion models (Weber and Morris intraparticle, Reichenberg, Boyd, and Bangham) to identify the rate and kinetics of sorption of Mo(V) complexion on OOBAR.In contact shaking time batch experiments, the sorption rate of Mo(V) ion onto a given adsorbent is proportional to the adsorbed amount of Mo(V) ion from the solution phase. Adsorption kinetics can be characterized by a pseudo-first-order equation, its k1, t1/2 and R2 factors were 0.072 min-1, 9.

65 min and 0.951 while resulted factors of k2, t1/2, and R2 in the pseudo-second-order kinetic model were 0.02 g/mmol min, 0.98×103 min and 1 for sorption of Mo(V) ion complex. By comparing values of correlation coefficients in both pseudo-first-order and pseudo-second-order, it clears that the pseudo-second-order is a good fit for the experiment.

Table 4Weber-Morris or intraparticle-diffusion is a single-resistance model used to analyze the nature of the ‘rate?controlling step’. It has a basic attention due to in most liquid systems the internal diffusion determines its adsorption rate. The results obtained for R2 and ki were 0.518 and 9×10-4 mmol/g min0.5. In Reichenberg diffusion model, its linear relation Bt and t was plotted, it clears that R2 value was 0.951 for Mo(V) sorption.

The better suggestion known as Boyd’s film-diffusion model is an intraparticle diffusion in a spherical particle which its Di and R2 parameters were obtained as 7.3×10-9 cm2/s and 0.518. By plotting a linear relation for Bangham’s pore diffusion model between log log Co/ (Co-Qt m) vs.

log t, it does not pass through the origin and values of ko, ? and R2 were 6.3×10-5 mL/g L, 0.042 and 0.761.Table 43. 4.

Thermodynamic studiesTemperature solution (22-57 ?C) that effect on sorption Mo(V) complexion was studied. Sorption percentages of Mo(V) complexion were slightly decreased from 98% to 84% with increasing of temperature. Parameters value of thermodynamic obtained from batch adsorption studies were recorded by using the Van't Hoff equation. The negative parameter values for ?G value: -21.

8 kJ/mol indicated that the sorption process has a spontaneous process, ?H: -46.2 kJ/mol has exothermic nature and ?S: -0.082 kJ/K.mol at the solid-liquid interface of Mo with OOBAR has the decrease disorder and randomness.Table 43. 3.

ApplicationApplication of real samples such as liver tissue mice, tap water, and vitamins drug for recovery of Mo(V) using OOBAR was estimated. A series of 25 mL from each sample were studied at optimum strong acidic medium, suitable reducing agent, NH4SCN, constant concentration and shaking for 1 hour with 0.1 g of OOBAR at room temperature.

The average recovery percentage of remaining concentration of Mo(V) was from 82-97%. The higher limit of quantitation (LOQ = 10 ?, where ? is the standard deviation) was 6-11.6 ?g/L and lower limit of detection (LOD = 3 ?) was 1.8-3.5 ?g/L which both indicates the higher sensitivity of Mo(V) determination. The addition values in liver mice tissue (0.95-0.

551 mg/L) (950 – 551 ?g/L), in tap water (184-2760 ?g/L), in vitayami (50.8-33.5 ?g/L), in V2 plus (800-458.6 ?g/L) (0.8-0.46 mg/L), in vitamax plus (95.

8-58.2 ?g/L) and in vitona plus (636-401 ?g/L) (0.64-0.4 mg/L) plus have recovery percentage of Mo(V) in the range 95-55% for liver mice tissue, 89-42% for tap water, 86-55% for vitayami, 100-57% for V2 plus, 80-48% for vitamax plus, 86-53% for vitona plus.

Average lower values of relative standard deviation (RSD%) for real samples (n=5) were found at 1.1 % (less than 10%), which reflect the accuracy and precision of the proposed method. The result obtained was shown that OOBAR was suitable for recovery Mo(V) ions in pharmaceutical and biological samples.Figure 8Table 5The sample flow rate effect depends on the recovery percentage of Mo(V) in real samples through OOBAR columns was studied. So, recovery of Mo(V) from OOBAR column were determined at different flow rates. Maximum recovery percentages (93.

7-97.3%) was shown at a flow rate in the range of 0.3-1.04 mL/min in vitamins drugs. It clears that the recovery of Mo(V) from vitamins drugs was very fast and this indicated that it doesn't depend on the change in flow rate effects. Also, at the flow rate (0.

25-1.6 mL/min) and (0.2-1.2 mL/min) with recovery percentages (95-55%) and (89-42%) which decreased by increasing Mo-liver mice tissue and Mo-Tap water concentrations.Figure 9Table 6The elution of Mo(V) from OOBAR columns was carried out at a flow rate of 3 mL/min by using NH4OH (0.05 mol/L) as eluent due to form ammonium molybdate complexes, then the eluent concentration was determined spectrophotometrically. The chromatogram separation of Mo(V) was completely eluted at a flow rate in the range of 0.

95 to 6 mL/min with recovery percentages (32.3-0%) at first 3-15 mL in Mo-Vitamins drug. 4. Conclusion Olive Bio-alkyd resin was successfully prepared as a new biosorbent in open esterification system.

OOBAR surface was characterized by UV-VIS, FTIR, Boehm titration, zero-point charge, iodine number, methylene blue index and bulk DC electrical conductivity. From obtained thermodynamic parameters for sorption of Mo(V) which indicates a spontaneous nature for them. They indicate also chemisorption and exothermic with decreased disorder and randomness. Due to the observed correlation coefficients for Mo(V) sorption, it clears that the Pseudo-second-order is a good fit to the experimental adsorption data and also the Langmuir model is the best isotherm model which suggests monomolecular layer as well as a homogeneously.

The result obtained was shown that OOBAR was suitable for recovery Mo(V) ions in pharmaceutical and biological samples including liver mice tissue and pharmaceutical vitamin drugs. The efficiency of chromatographic column decreases due to smaller plate height and larger plates number, so OOBAR column has a good effect for Mo(V) separation.


I'm Piter!

Would you like to get a custom essay? How about receiving a customized one?

Check it out